Raport stiintific privind implementarea proiectului PN-II-RU-TE-2012-3-0403; contract nr. 3/2013 perioada mai – decembrie 2013

Inaintea descrierii succinte a rezultatelor semnificative conform obiectivelor si activitatilor incluren planul de realizare, **etapa I/2013**, vom prezenta un tabel in care sunt incluse principalele probe preparate in cadrul acestei etape, conditiile de sinteza si referintele bibliografice corespunzatoare (Tabel *).

 Tabel 1 Centralizator al probelor de suporturi si precursori catalitici preparati in cadrul etapei I/2013

Nr	Proba	Cod proba	Tip proba	Metoda si conditii de sinteza/Tratame 🔪 termice/meierinte				
0	SBA-15, 100% SiO ₂	SBA-15		 Dizolvare P123 cu autosamblarea surfactantuli in recle; Formarea retelei de silice in jurul miccle lor de sur actant; Tratament hidrotermal 100 °C, 48 h Calcinare 550 °C, exicator CaCl₂[1] 				
1	Al-SBA-15, 5 % Al ₂ O ₃	AS[5]						
2	AI-SBA-15, 10 % AI ₂ O ₃	AS[10]						
3	Al-SBA-15, 20 % Al ₂ O ₃	AS[20]						
4	Al-SBA-15, 50 % Al₂O ₃	AS[50]		1). Dizolvare P123 cu auto imbla rfactantului in micele;				
5	Fe-SBA-15, 5 % Fe ₂ O _{3,} pH= 2	FS[5]-2		2). Formarea retelei de silic in jurul mi lelor de surfactant;				
6	Fe-SBA-15, 5 % Fe ₂ O _{3,} pH= 3	FS[5]-3	.2	3). Iratament hidrotermal nr.1: 100 C, 8 h;				
7	Fe-SBA-15, 5 % Fe ₂ O _{3,} pH= 4	FS[5]-4	calit	Al-SBA-15 [2a], recreativ Ga- $_3$ A-15 [2b])				
8	Fe-SBA-15, 5 % Fe ₂ O ₃ , pH= 6	FS[5]-6	cat	5). Tratament h vrotev al nr. 2: 100 °C, 48 h;				
9	Fe-SBA-15, 5 % Fe ₂ O _{3,} pH= 7	FS[5]	ort	6). Calcinare 55 °C, ex ator CaCl ₂				
10	Fe-SBA-15, 5 % Fe ₂ O ₃ , pH= 8	FS[5]-8	dng					
11	Fe-SBA-15, 10 % Fe ₂ O ₃ , pH= 7	FS[10]	0,					
12	Ga-SBA-15, 20 % Ga ₂ O ₃	GS[20]						
13	P123-SBA-15, as-made	P123-SBA-15		Etape 1) 3). proba A-15, fara etapa de calcinare.				
14	P123-SBA-15, extras 5 h	P123-SBA-15(5h)		E 1pe 1): ¹). proba SBA-15, inlocuirea etapei de calcinare cu extractia solid- li 1d a P123 solutie etanolica 96% la 70 °C, timp de 5 h.				
15	P123-SiO ₂ extras 50 % din P123	P123-SiO ₂ (50)	(1). $23 - fu$ tionalizat cu 3-iso-cianatopropiltrietoxisilan: 72 h, Ar; \rightarrow Si- 23; 2) P123 + Si-P123 + HCl + tetraetilortosilicat: 72 h, Ar; \rightarrow Hibrid organic- ar rgar . P123-SiO ₂ de tip SBA-15; 3). x actie P123 in solutie etanolica; uscare 120 °C; \rightarrow P123-SiO ₂ (50). [3]				
16	Cu5/SBA-15	5CuO/SBA-15_MDI		Mile Drying Impregnation (MDI): M ²⁺ (NO ₃) _{2(aq)} ; 5 wt.% M ⁰ , uscare 25 °C, 5 zile, calcinare 500 °C. [4]				
17	Cu5/SBA-15	5Cu/SBA-15_DP		D epunere prin p recipitare (DP): $M^{2+}(NO_3)_{2(aq)}$; 5 wt. % M^0 ; uree, 90 °C, pH ~ 7, 24 h; uscare 60 °C, peste noapte; calcinare 500 °C. [5]				
18	Cu5/Al-SBA-15, 5 % Al ₂ O ₃	5CuO/AS[5] N 1		Idem proba 16				
19	Cu5/Al-SBA-15, 10 % Al ₂ O ₃	5CuO/AS[10' VIDI		Idem proba 16				
20	Cu5/Al-SBA-15, 20 % Al ₂ O ₃	5CuO/AS[7] N.		Idem proba 16				
21	Cu5/Al-SBA-15, 20 % Al ₂ O ₃	5CuO/AS[20]_TS		Two Solvents (TS) : suport + hexan; $M^{2+}(NO_3)_{2(aq)}$; 5 wt.% M^0 ; uscare 25 °C; 5 zile: calcinare 500 °C (metoda optimizata in cadrul laboratorului). [6]				
22	Cu5/Fe-SBA-15, 5 % Fe ₂ O ₃	5CuO/FS[5] N 1		Idem proba 16				
23	Cu5/Fe-SBA-15, 5 % Fe ₂ O ₃	5CuO, ^[5] \S		Idem proba 21				
24	Cu5/Ga-SBA-15, 20 % Ga ₂ O ₃	5CuO/GSI∠ 1 MDI		Idem proba 16				
25	Cu5/Ga-SBA-15, 20 % Ga ₂ O ₃	ruO/GS[20 TS		Idem proba 21				
26	Cu10/Al-SBA-15, 20 % Al ₂ O ₃	100 7/AST J MDI		Idem proba 16; 10 wt.% M ⁰				
27	Cu10/Fe-SBA-15, 5 % Fe ₂ C	10CuO/FS[5] MDI		Idem proba 16; 10 wt.% M ⁰				
28	Cu10/Ga-SBA-15, 20 % C 12O3	'GS[20] MDI	litic	Idem proba 16; 10 wt.% M ⁰				
29	Cu20/Al-SBA-15, 20 % Al ₂	20CuO/AS[20]_MDI	atal	Idem proba 16; 20 wt.% M ⁰				
30	Cu20/Fe-SBA-15, 5 % Fe ₂ O ₃	20CuO/FS[5]_MDI	u C	Idem proba 16; 20 wt.% M ⁰				
31	Cu20/Ga-SBA-15, 20 % Ga2	2JCuO/GS[20]_MDI	ILSC	Idem proba 16; 20 wt.% M ⁰				
32	Cu5/P123-SiO ₂ (50)	5CuO/P123- SiO ₂ (50) MDI	Precu	Idem proba 16				
33	Cu5/P123-SBA-15(5.	5CuO/P123-SBA- 15(5h) MDI		Idem proba 16				
34	Co5/SF \-15	5Co ₂ O ₄ /SBA-15 MDI		Idem proba 16				
35	Co5/SBA-	5Co/SBA-15 DP		Idem proba 17				
36	Co5/Al-SBA-15 ~% Al-O2	$5C_{0}O_{4}/AS[5]$ MDI		Idem proba 16				
37	C_{0} (M-SBA-15, 10 % Al ₂ O ₂	$5Co_3O_4/AS[10]$ MDI		Idem proba 16				
38	5/AI- 74-15, 20 % Al-O-	5C0204/AS[20] MDI		Idem proba 16				
31	Co /Al-SBA 15, 20 % Al ₂ O ₂	5Co ₃ O ₄ /AS[20] TS		Idem proba 21				
4	¢ /Al ₂ O ₃	Co ₃ O ₄ /Al ₂ O ₃		C o- p recipitare (CP): $M^{2*}(NO_3)_{2(qq)}$; 5 wt. % M^0 ; Na_2CO_3 , 60 °C, pH ~ 7, 2 h; uscare 60 °C, peste noapte: calcinare 500 °C, [7]				
41	د. ⁻ ∕Fe-SBA-15. 5% Fe₃O₃	5Co ₃ O ₄ /FS[5] MDI		Idem proba 16				
42	Co5/Fe-SBA-15. 5% Fe ₂ O ₂	5Co ₂ O ₄ /FS[5] TS		ldem proba 21				
43	Co5/Ga-SBA-15. 20 % Ga ₂ O ₂	5Co ₂ O ₄ /GS[20] MDI		Idem proba 16				
44	Co5/Ga-SBA-15, 20 % Ga ₂ O ₃	5Co ₃ O ₄ /GS[20]_TS		Idem proba 21				

45	CuCo/SBA-15	CuO-Co ₃ O ₄ /SBA- 15_MDI		ldem proba 16	
46	CuCo/SBA-15	CuCo/SBA-15_DP]	Idem proba 17	
47	CuCo/Al-SBA-15	CuO-Co ₃ O ₄ /AS[5]_MDI		Idem proba 16	
48	CuCo/Al-SBA-15	CuO-Co ₃ O ₄ /AS[10]_MDI		Idem proba 16	
49	CuCo/Al-SBA-15	CuO-Co ₃ O ₄ /AS[20]_MDI		Idem proba 16	
50	CuCo/Al-SBA-15	CuO-Co ₃ O ₄ /AS[20]_TS			Ide oba 21
51	CuCo/Fe-SBA-15	CuO-Co ₃ O ₄ /FS[5]_MDI		Idem proba 16	
52	CuCo/Fe-SBA-15	CuO-Co ₃ O ₄ /FS[5]_TS			le em proba 21
53	CuCo/Ga-SBA-15	CuO-Co ₃ O ₄ /GS[20]_MDI		Idem proba 16	
54	CuCo/Ga-SBA-15	CuO-Co ₃ O ₄ /GS[20]_TS]		Idem proba 21

In acord cu planul de realizare, in **etapa I/2013** a proiectului au fost atinse urmatoarele ob ective: O1/ Sinteza si caracterizarea suporturilor catalitice de tip M-SBA-15 (M = Al, F +, Ga) metoda ajustarii pH-ului (*pHM*). A1.1. Sinteza si caracterizarea silicei mezoporoase de tip SE¹-15; 1.2. Sinteza si caracterizarea silicei mezoporoase de tip Al-SBA-15; A1.3. Sinteza si caracterizar a succei mezoporoase

de tip Fe-SBA-15 ; A1.4. Sinteza si caracterizarea silicei mezoporoase de tipe -SBA-15. In prima faza a proiectului au fost preparate probe de suporturi mezopor asc de ip silice SBA-15 si de tip silice continand heteroatomi (M-SBA-15) cu diferite compozitii chimice in gel (Tabel 2). Obiectivul principal a constat in incorporarea heteroatomilor in matricea de silice fie prin forr are de legaturi Si-O-M fie sub forma de clusteri de M_2O_3 inalt dispersati pe silicea mezoporoasa (BA-5). In acest sens au fost intreprinse cateva studii de optimizare a proprietatilor structurale si texturale ale supreturilor: *(i)* efectul continutului in heteroatomi, *(ii)* efectul naturii heteroatomilor si *(iii)* efectul -1-ului de ajustare (seria Fe-SBA-15).

Tabel 2 Comp	ozitia chimica (ICP) si proprietatile	e texturale ale su	porturilor mezo	poroase M	∼ 4-15	(fizisorbtia azotuli	ui la -196 °	C)
							\		- /

Proba	M ₂ O ₃ , wt%	S _{BET} , m ² .g ⁻¹	\$ m ² .g ⁻¹	V _{pori} , cm ³ .g ⁻¹	D _{pori} , nm (NL-DFT)
SBA-15	-	844	145	1.34	8.0
AS[5]	4.5	394	100	1.37	12.0
AS[10]	9.1	351		0.86	9.2
AS[20]	20.5	360	20	0.76	8.4
AS[50]	49.2	437	6	0.65	7.6
GS[20]	16.0	359	99	0.86	10.3
FS[5]-2	0.3	802	123	1.31	8.3
FS[5]-3	2.0	761	133	1.22	8.2
FS[5]-4	2.9	6	60	1.21	8.3
FS[5]-6	3.0	580	115	1.26	9.0
FS[5]	5.3	501	115	1.45	11.6
FS[5]-8	5.9	76	94	1.43	15.0
FS[10]	5.5	575	136	1.62	10.9

Figura 1 Imagini TEM re, rezenta. e si spectre EDX pentru suporturile mezoporoase Al-SBA-15 si Ga-SBA-15

Pentru materialele din Jeria Al-SBA-15 si Ga-SBA-15 sintetizate la pH_{aj}=7.5, caracterizarile prin ICP, DRX la unghiuri mic si mari, fizisorbtia N₂, TEM/EDXS, ²⁷Al MAS NMR au indicat urmatoarele tendinte: (*i*) gradul de ordonare a mez structurilor M-SBA-15 este mai scazut decat in cazul SBA-15, desi ramane la un nivel accepta (*ii*) incorporarea Al este aproape completa pentru intreg domeniul de concentratii studiat (5-50 wt° A, O₃), (*iii*) introducerea progresiva a Al are un efect pozitiv asupra caracteristicilor structurale ale s oorti ilor pana la un continut de 20wt%, efect asociat cu stabilitatea hidrotermala ridicata a alumino-silic. (*ii*) n etapa a 2-a de sinteza, (*iv*) cresterea continutului in Al la 50wt% nu este favorabil, rezultand in segrega a aluminei amorfe la suprafata externa a granulelor de suport (Figura 1, proba AS[50]) si chiar separarea acesteia de suport; (*v*) materialele Al-SBA-15 prezinta in principal doua tipuri de unitati

structurale ale Al: AlO₄ (Al_{IV}) [Al grefat bipodal] si AlO₆ (Al_{VI}) [Al in Al₂O₃ partial extraretea sau extraretea]; raportul Al_{VI}/Al_{IV} creste monoton cu cresterea continutului in heteroatomi; (*vi*) gradul de incorporare a Ga este mai scazut decat a Al (16 wt% Ga₂O₃ *vs* 20.5 wt% Al₂O₃), (*vi*) caracteristicile structurale si texturale ale Ga-SBA-15 (proba GS[20]) sunt inferioare comparativ cu Al-SBA-15 (proba AS[20]) (se observa o co apore partiala a mezostructurii-Figura 1, iar porii sunt mai largi cu ~2nm (Tabel 2) datorita hidrolizei partialo a silicei), datorita probabil capacitatii mai scazute a speciilor superificiale de Ga de a st biliza ilicea in conditii hidrotermale si la pH usor bazic, (*vii*) nu s-au identificat specii masice de M₂O₃ (DRX, bsent) liniilor de difractie specifice), sugerand ca speciile oxidice sunt amorfe si/sau sub forma inalt dix o rsata.

Figura 2 Imagini TEM reprezentative si spectre EDX pentru suporturile mezoporoase Fe-SbA-15

Figura 3 Izoterme de adsorbtie/desorbtie N_2 (A) ectre DR UV-Vis (B) pentru suporturile mezoporoase Fe-SBA-15

Per su ma scalele din seria Fe-SBA-15, rezultat le ICP, DRX la unghiuri mici si mari, fi sorbtia N₂, TEM/EDXS, DR UV-Vis au indicat ca ou ta cu cresterea valorii pH_{aj}: (*i*) gradul de corrorare a Fe creste continuu, incorporarea totala inregistandu-se la pH_{aj} \geq 7 (5.6±0.3 wt%); (*i* gradul de ordonare a mezostructurilor si calitatea lor texturala scade, in special la pH_{aj} \geq 7 (histerezis neregulat la presiuni relative de 0,7-0,95; distributie larga a mezoporilor si diametre mai mari de 12 nm; colapsare partiala a mezostructurii); (*iii*) la pH_{aj} \geq 7, continutul in Fe introdus efectiv in matricea de silice este de

~2.5 wt%, conform EDX, restul de Fe fiind locanzat in faze extraretea separate de suport (cel mai probabil de (filo)silicati de Fe [5]); *(iv)* con inutul elativ de specii de Fe izolate (benzi la ~250 nm) creste continuu in timp ce continutul relativ al speciilor in Fe oligomerice extraretea (benzi la ~320 nm) si de tip clusteri inalt dispersati (benzi la ~500 nm) cade (co form DR UV-Vis). Pe de alta parte, cresterea concentratiei de Fe in gelul de sinteza (corespunzator la 10 % Fe₂O₃, proba FS[10]) nu a condus la un grad de incorporare ridicat a heteroatomilor (*i.e.*, 5 % wt⁶, ICP) si in plus a favorizat segregarea severa sub forma de aglomerate mixte Fe-Si separate de suport (Figura 2).

O2/ Studii preliminare asurra suporturilor catalitice hibride organic-anorganice de tip P123-SBA-15. A2.1. Suporturi do tip P123-SBA-15 cu diferite grade de extractie.; A2.2. Suporturi de tip P123-SBA-15 preparate prin co-co. Jensare.

In cadrul acestui collectiv, s-au preparat si caracterizat preliminar prin fizisorbtia azotului si TG 3 suporturi hibride organic-anorga, ice, partea organica fiind reprezentata de tribloc co-polimerul Pluronic P123 nativ (partea hio, ofila de polietilenoxid-PEO sechestrata in microporii SBA-15 as-made; continut reglat prin extractia partia, cu etanol) sau Pluronic P123 functionalizat cu grupari trietoxisilan (legat chimic prin co-condens, re in timpul sintezei SBA-15). Ideea este de modela raportul hidrofilie/hidrofobie a suportului si de cur a microdomenii hidrofile de PEO pentru includerea precursorilor metalici prin impregnare.

Pi, ?	S _{BET} , m ² .g ⁻¹	S _{micropori} , m ² .g ⁻¹	V _{pori} , cm ³ .g ⁻¹	V _{micropori} , cm ³ .g ⁻¹	D _{pori} , nm (NL-DFT)	P123, wt% (TG)
P123-5. \-15	391	0	1.16	0.00	8.3	30
P123-SBA-15(5h)	802	69	1.86	0.05	9.0	15
P123-SiO ₂ (50)	646	25	1.43	0.0007	9.2	25

T Jel 3 P prietatile texturale ale suporturilor hibride organic-anorganice (fizisorbtia azotului la -196 °C) si continutul in P123 (TG)

Tabelul 3 centralizeaza proprietatile texturale ale acestor suporturi hibride. Materialele au prezentat izoterme de adsorbtie/desorbtie caracteristice materialelor ordonate de tip SBA-15, de tipul IV, cu histerezis de tipul H1. De asemenea, materialele prezinta suprafete specifice ridicate (cu excertie probei P123-SBA-15 care prezinta in pori P123 nativ) si distributie ingusta a marimii porilor.

O3/ Investigarea proprietatilor geometrice si electronice ale nanoparticulelor metalice depuse pe suporturile de silice. A3.1. Sinteza si caracterizarea catalizatorilor monometalici pe baza de cup u; A3.2. Sinteza si caracterizarea catalizatorilor monometalici pe baza de cobalt; A3.3. Sinteza si caracterizarea catalizatorilor bimetalici pe baza de cupru si cobalt.

Pe baza rezultatelor caracterizarilor fizico-chimice de la O1, au fost selectate 5 suportur de CO M-SBA-15 (marcate cu rosu in Tabelul 2) si 2 suporturi de tip P123-SBA-15 pentru repaire a catalizatorilor (bi)metalici pe baza de Cu si Co prin metodele MDI si TS. De asemenea, au fost prepare i catalizatori de referinta pe suport de SBA-15 prin metoda DP si pe Al₂O₃ prin CP. Dupa calcina. *Pe*ducere, formele oxidice/metalice au fost analizate prin diverse tehnici precum ICP, DRX la unchiuri mari, fizisorbtia azotului la -196 °C, (HR)TEM, TPR-H₂, chemosorbtia disociativa a N₂O la 70 °C (ca aliz Co i de Cu) si XPS, pentru a studia efectul mediului local asupra proprietatilor nanoparticulelor (NP) oxidi e/metalice: compozitie chimica (in masa si la suprafata), proprietati morfo-structurale si texturale reductibilitatea precursorilor metalici, efecte electronice si interactii metal-metal si metal-suport de si persie/suprafata activa a NP etc.

Figura 4 Difractograme DRX (A si B), profiluri TPR (C) si 🖕 ect. 🔅 S (D) entru catalizatori (bi) metalici pe suporturi de tip SBA-15 si M-SBA-15

De exemplu, din Figura 4A se poate obterva efect. pozitiv al incorporarii graduale a Al asupra dimensiunii medii a cristalitelor de CuO (d_{CuO}), cale scale continuu (creste dispersia NP), practic la continut maxim de Al acestea nefiind detectate prin DRX. In general, s-a constatat ca suporturile cu continut mic de heteroatomi (AS[5] si FS[5]) au o capacit de scazuta de stabilizare a NP (d_{CuO} = 24 si 28.2 nm), aceasta fiind practic similara cu silicea SBA-15 (d_{Cuc} = 31.5 nm), in timp ce suporturile cu continut ridicat de heteroatomi conduc remarcabil la stabilizarea NP su o forma inalt dispersata (d_{CuO} < 3 nm/ AS[20] si GS[20]; d_{Co3O4} = 6 nm/GS[20]). In deplin acord cu a aste cendinte, dimensiunea medie a cristalitelor de Cu (d_{Cu}) scade de la 8.1 nm (SBA-15) la 1.4 n d (A [20]) cu cresterea continutului in Al, in linie cu cresterea dispersiei (D) de la 4.6 la 25.6% (si a rapo. vului cu/SIXPS de la 0.005 la 0.167), precum si a suprafetei active de Cu de la 3.8 la 21.2 m²_{Cu}·g_{cat}⁻¹ (Tabel 4). Incoducerea Ga are de asemenea un efect pozitiv asupra dispersiei (D = 21.8 %; d_{Cu} = 1.6 nm; S_{Cu} =18.1 m²_{cu}·g_{cat}⁻¹). In ceea ce priveste metoda de sinteza, se poate afirma ca indiferent de natura heteoatomu.¹ (Al si Ga), metoda MDI este mai eficienta decat metoda TS (*e.g.*, D = 25.6 vs 16.6%/AS[20]). For the inc resante sunt rezultatele XPS (Figura 4D) care au relevat, de exemplu, ca in proba 5CuO/AS[20]_MDI carc nata coexista doua specii de Cu²⁺ in medii locale diferite[8]: Cu²⁺ in CuO inalt **Tabel 4** compo. via chi. ca (ICP) si proprietati superficiale (chemosorbtia N₂O, XPS) pentru probele 5CuO/M-SBA-15 (C-calcinat; R-redus)

	ICP	Che	mosorbtie N ₂ O la 70	XPS		
Proba	Cu, wt%	d _{cu} , nm	D, %	$S_{Cu}, m_{Cu}^2, g_{cat}^{-1}$	EL Cu 2p _{3/2} (eV)	Raport at. Cu/Si
5CuO/SBA-1. MDI	4.6	8.1	4.6	3.8	933.5 ^C /932.0 ^R	0.007 ^C /0.005 ^R
5Cu /ASL _MDi	5.2	6.1	6.9	5.7	-	-
5 JO/AS ^r J]_MDI	4.4	1.9	18.8	15.6	-	-
5Cu、'^ _[20]_MDI	4.4	1.4	25.6	21.2	933.3;935.4 ^C /932.8 ^R	0.115 ^C / 0.167 ^R
5CuO/Aଧ୍ରୀ_TS	4.5	2.2	16.6	13.8	-	-
5CuO/GS[20]_MDI	4.3	1.6	21.8	18.1	932.8 ^R	0.143 ^R
5CuO/GS[20]_TS	4.5	1.9	15.0	12.4	-	-

dispersat fara interactie cu suportul (EL = 933.3 eV; similar cu SBA-15: EL = 933.5 eV) si Cu²⁺ inalt dispersat in interactie cu suportul (EL = 935.4 eV). Aceasta deplasare pozitiva a valorii EL pentru nivelul Cu 2p indica un transfer de electroni de la Cu catre suport (*i.e.*, interactie puternica metal-suport: SMSI) [8¹, care nu poate fi asociata decat cu prezenta heteroatomilor de Al. Pentru probele reduse, EL Cu2p se di olas car la valori mai mici (932.8 eV) indicand reducerea speciilor Cu²⁺ la Cu⁺ si/sau Cu⁰. Deplasarea nozitiva a EL comparativ cu SBA-15 (932.0 eV) confirma efectul SMSI in cazul suporturilor M-SBA-15 (*e.g.*, S[20]). De altfel, aceste date sunt confirmate prin TPR (*e.g.*, $5CuO/AS[20]_TS$; Figura 4, care indica existenta a doua specii diferite de Cu²⁺ care sufera reducerea la Cu⁰: fara interactie (r_{11} , care 330 °C). Introducerea simultana a Cu si Co modifica aceste in cractii metalsuport, cel mai probabil datorita interactiilor metal-metal. Astfel, reductibilitat (Figura 4, r_{1}) in sistemele Cu-Co.

O4/ Evaluarea proprietatilor catalitice ale materialelor preparate in hidrogenarea comparate in

		Conditii test/Performante catalitice [X_{CNA} dupa 360 min. de roac, S_{PROD} la izoconversie: $X_{CNA} \sim 20\%$]									
Nr.	Catalizator	P _{atm} ; 150 °C	C, 1 mL CNA, 2	25 mL CP, 20	65 mg cat.	g cat. John State Stat					
		Х _{спа} , %	S_{CNOL}, %	S_{HCNA}, %	S _{HCNOL} , %	X _{CI} ,%	S _{CNOL} , %	S_{HCNA}, %	S _{HCNOL} , %		
1	5CuO/SBA-15_MDI [*]	2.4	23.7 ⁺	20.1	56.2 ⁺	81	64.9^+	29.8 ⁺	5.3 ⁺		
2	5CuO/AS[5]_MDI [*]	< 2	n.d.	n.d.	n.ď	7	60.5^+	33.0 ⁺	6.5^+		
3	5CuO/AS[10]_MDI [*]	< 2	n.d.	n.d.	n.d	48.	45.0	43.5	11.5		
4	5CuO/AS[20]_MDI [*]	< 2	n.d.	n.d.	n.d.	80.1	55.0	37.0	8.0		
5	5CuO/AS[20]_TS [*]	< 2	n.d.	n.d.		i	n evaluare de	ecembrie 201	.3^		
6	5CuO/FS[5]_MDI [*]	< 2	n.d.	n.d.	n.d.	11.7	72.0 ⁺	23.3 ⁺	4.7 ⁺		
7	5CuO/FS[5]_TS [*]	< 2	n.d.	n.d.	n.d.	in evaluare decembrie 2013^					
8	5CuO/GS[20]_MDI [*]	< 2	n.d.	r J.	n.u.	28.5	49.8	46.6	3.6		
9	5CuO/GS[20]_TS [*]	< 2	n.d.	ı d.	<u>n</u> .d,	10.5	50.1 ⁺	42.2 ⁺	7.7*		
10	5CuO/P123-SiO ₂ (50)_MDI [*]	77.9	27.0	65.0	.0	in evaluare decembrie 2013^					
11	5CuO/P123-SBA-15(5h)_MDI [*]	29.0	42.0	46.6	11.4	i	n evaluare de	ecembrie 201	.3^		
12	10CuO/AS[20]_MDI [*]	n.d.	n.d.	n.	n.d.	99.7	50.4	40.0	9.6		
13	20CuO/AS[20]_MDI [*]	n.d.	n.c'	n.d.	n.d.	i	n evaluare de	ecembrie 201	3^		
14	5Cu/SBA-15_DP [*]	43.2	4. ?	39.5	10.8	n.d.	n.d.	n.d.	n.d.		
15	5Co/SBA-15_DP [#]	26.1	52.4	3 .3	9.3	n.d.	n.d.	n.d.	n.d.		
16	5Co ₃ O ₄ /AS[10]_MDI [#]	< 2	<u>n.d.</u>	л.d.	n.d.	i	n evaluare de	ecembrie 201	3^		
17	5Co ₃ O ₄ /AS[20]_MDI [#]	< 2	ત,	n.d.	n.d.	26.4	63.3	28.2	8.5		
18	$Co_3O_4/Al_2O_3^{\#}$	52.0	57.7	31.4	10.9	n.d.	n.d.	n.d.	n.d.		
19	5Co ₃ O ₄ /FS[5]_MDI [#]	< 2	n.d.	n.d.	n.d.	i	n evaluare de	ecembrie 201	3^		
20	5Co ₃ O ₄ /GS[20]_MDI [#]	2	n.d.	n.d.	n.d.	7.3	66.6^+	26.0 ⁺	7.4 ⁺		
21	CuCo/SBA-15_DP [*]	14.9	54.5 ⁺	34.6 ⁺	10.8^+	n.d.	n.d.	n.d.	n.d.		
22	CuO-Co ₃ O ₄ /AS[5]_MDI [*]	< 2	n.d.	n.d.	n.d.	in evaluare decembrie 2013^					
23	CuO-Co ₃ O ₄ /AS[10]_MDI [*]	< 2	n.d.	n.d.	n.d.	i	n evaluare de	ecembrie 201	3^		
24	CuO-Co ₃ O ₄ /AS[20]_MDI [*]	<u> </u>	n.d.	n.d.	n.d.	32.5	57.2	36.2	6.6		
25	CuO-Co ₃ O ₄ /FS[5]_MDI [*]	< 2	n.d.	n.d.	n.d.	in evaluare decembrie 2013^					
26	CuO-Co ₃ O ₄ /GS[20]_MD'		n.d.	n.d.	n.d.	47.8	60.0	34.0	6.0		

 Tabel 5 Centralizator al rezultatelor catalitice obtinute in cadrul etapei I/2013

catalizator redus la 350 °C; [#]catalizator la 500 °C; CP – carbonat de propilen; *i*POH – 2-propanol; n.d. – nedeterminat; ^ justificat de instalarea reactorului Parr pe data 20.09.2013 (conform PV receptie 19832/20.09. 3 si FF LIC443/19.09.2013); ^{*}S_{PROD} la X_{CNA} ≤ 10%

Materialele obtinute au f st testate in reactia de hidrogenare in faza lichida a CNA atat la P_{atm} (1L.h⁻¹ H₂) cat si sub presiune f_{1} \cap bar H₂). In Tabelul 5, rezultatele prezentante ilustreaza clar influenta unor factori importanti (*e.g.*, *p*₁ siune, natura suportului/continut in heteroatomi, metoda de sinteza, natura/dispersia NP metalice, grad de narcare, efecte sinergetice in sisteme bimetalice) si necesitatea optimizarii mediului local in can sun dispersate NP, care se constitue intr-o strategie foarte eficienta in dezvoltarea unor catalizatori per remanti in termeni de activitate si chemoselectivitate la alcoolul nesaturat. De exemplu, rezultate catalitice remarcabile s-au obtinut pentru sistemele CuO/AS[20]_MDI (X_{CNA} >75%, S_{CNOL} > 50%).

Rezu Lau, Paul Instituit subiectul a 4 comunicari la manifestari stiintifice internationale, 2 articole ISI publicate [5,7] (vezi Anexa la raport). Refunte: 1. nao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D., Science 1998, 279, 548; 2. a. Ungureanu, A., Dragoi, B., Hulea, V., Cacciaguerra, T., Noni, D., Jinas, V., Dumitriu, E. *Microporous and Mesoporous Mater.* 2012, *163*, 51; b. Jarry, B., Launay, F., Nogier, J.P., Montouillout, V., Gengembre, L., Bonardet, J.L. *Appl.Catal. A* 2006, 102–177; 3. Ibrahim, A. C., Devautour-Vinot, S., Naoufal, D. Mehdi, A., *New J. Chem.* 2012, *36*, 1218; 4. Ungureanu, A.; Dragoi, B.; Chirieac, A.; Royer, S.; Duprez, D.; Dumitriu, E. J. *Mater.* C. 2011, *21*, 12529; 5. Ciotonea, C., Dragoi, B., Ungureanu, A., Chirieac, A., Petit, S., Royer, S., Dumitriu, E. *Chem Commun.* 2013, *49*, 7665; 6. van der Meer J., Bardez I., Bart F., Albouy P., Wallez G., Davidson A., *Microporous and Mesoporous Mater.* 2009, *118*, 183; 7. Rudolf, C., Dragoi, B., Ungureanu, A., Chirieac, A., Royer, S., Nastro, A., Dumitriu, E., Catal. Sci. Technol. 2014, **D0I:** 10.1039/C3CY00611E. 8. Yin, A., Guo, X., Dai, W.-L., Fan, K., *J. Phys. Chem.* C 2010, *114*, 8523.